Cx43 suppresses evx1 expression to regulate joint initiation in the regenerating fin.

نویسندگان

  • Gabrielle Dardis
  • Robert Tryon
  • Quynh Ton
  • Stephen L Johnson
  • M Kathryn Iovine
چکیده

BACKGROUND How joints are correctly positioned in the vertebrate skeleton remains poorly understood. From our studies on the regenerating fin, we have evidence that the gap junction protein Cx43 suppresses joint formation by suppressing the expression of the evx1 transcription factor. Joint morphogenesis proceeds through at least two discrete stages. First, cells that will produce the joint condense in a single row on the bone matrix ("initiation"). Second, these cells separate coincident with articulation of the bone matrix. We propose that Cx43 activity is transiently reduced prior to joint initiation. RESULTS We first define the timing of joint initiation with respect to regeneration. We next correlate reduced cx43 expression and increased evx1 expression with initiation. Through manipulation of cx43 expression, we demonstrate that Cx43 negatively influences evx1 expression and joint formation. We further demonstrate that Cx43 activity in the dermal fibroblasts is required to rescue joint formation in the cx43 mutant, short finb123 . CONCLUSIONS We conclude that Cx43 activity in the dermal fibroblasts influences the expression of evx1, and therefore the differentiation of the precursor cells that give rise to the joint-forming osteoblasts. Developmental Dynamics 246:691-699, 2017. © 2017 Wiley Periodicals, Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of an evx1-Dependent Joint-Formation Pathway during FIN Regeneration

Joints are essential for skeletal flexibly and form, yet the process underlying joint morphogenesis is poorly understood. Zebrafish caudal fins are comprised of numerous segmented bony fin rays, where growth occurs by the sequential addition of new segments and new joints. Here, we evaluate joint gene expression during fin regeneration. First, we identify three genes that influence joint format...

متن کامل

Hsp47 mediates Cx43-dependent skeletal growth and patterning in the regenerating fin

Skeletal morphogenesis describes how bones achieve their correct shape and size and appropriately position joints. We use the regenerating caudal fin of zebrafish to study this process. Our examination of the fin length mutant short fin (sof (b123)) has revealed that the gap junction protein Cx43 is involved in skeletal morphogenesis by promoting cell proliferation and inhibiting joint formatio...

متن کامل

Connexin43 regulates joint location in zebrafish fins.

Joints are essential for skeletal form and function, yet their development remains poorly understood. In zebrafish fins, joints form between the bony fin ray segments providing essentially unlimited opportunities to evaluate joint morphogenesis. Mutations in cx43 cause the short segment phenotype of short fin (sof(b123)) mutants, suggesting that direct cell-cell communication may regulate joint...

متن کامل

Semaphorin3d mediates Cx43-dependent phenotypes during fin regeneration.

Gap junctions are proteinaceous channels that reside at the plasma membrane and permit the exchange of ions, metabolites, and second messengers between neighboring cells. Connexin proteins are the subunits of gap junction channels. Mutations in zebrafish cx43 cause the short fin (sof(b123)) phenotype which is characterized by short fins due to defects in length of the bony fin rays. Previous fi...

متن کامل

Esco2 regulates cx43 expression during skeletal regeneration in the zebrafish fin.

BACKGROUND Roberts syndrome (RBS) is a rare genetic disorder characterized by craniofacial abnormalities, limb malformation, and often severe mental retardation. RBS arises from mutations in ESCO2 that encodes an acetyltransferase and modifies the cohesin subunit SMC3. Mutations in SCC2/NIPBL (encodes a cohesin loader), SMC3 or other cohesin genes (SMC1, RAD21/MCD1) give rise to a related devel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental dynamics : an official publication of the American Association of Anatomists

دوره 246 9  شماره 

صفحات  -

تاریخ انتشار 2017